000890430 000__ 03375cam\a2200457Ii\4500 000890430 001__ 890430 000890430 005__ 20230306150102.0 000890430 006__ m\\\\\o\\d\\\\\\\\ 000890430 007__ cr\cn\nnnunnun 000890430 008__ 190517s2019\\\\sz\a\\\\ob\\\\001\0\eng\d 000890430 019__ $$a1105173286 000890430 020__ $$a9783030156756$$q(electronic book) 000890430 020__ $$a3030156753$$q(electronic book) 000890430 020__ $$z9783030156749 000890430 0247_ $$a10.1007/978-3-030-15675-6$$2doi 000890430 0247_ $$a10.1007/978-3-030-15 000890430 035__ $$aSP(OCoLC)on1101618424 000890430 035__ $$aSP(OCoLC)1101618424$$z(OCoLC)1105173286 000890430 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dYDX$$dUKMGB$$dOCLCF$$dLQU 000890430 049__ $$aISEA 000890430 050_4 $$aQA243 000890430 08204 $$a512.7/3$$223 000890430 1001_ $$aPitale, Ameya,$$d1977-$$eauthor. 000890430 24510 $$aSiegel modular forms :$$ba classical and representation-theoretic approach /$$cAmeya Pitale. 000890430 264_1 $$aCham, Switzerland :$$bSpringer,$$c2019. 000890430 300__ $$a1 online resource (ix, 138 pages) :$$billustrations. 000890430 336__ $$atext$$btxt$$2rdacontent 000890430 337__ $$acomputer$$bc$$2rdamedia 000890430 338__ $$aonline resource$$bcr$$2rdacarrier 000890430 4901_ $$aLecture notes in mathematics,$$x0075-8434 ;$$vvolume 2240 000890430 504__ $$aIncludes bibliographical references and index. 000890430 5050_ $$aIntroduction -- Lecture 1:Introduction to Siegel modular forms -- Lecture 2: Examples -- Lecture 3: Hecke Theory and L-functions -- Lecture 4: Non-vanishing of primitive Fourier coefficients and applications -- Lecture 5: Applications of properties of L-functions -- Lecture 6: Cuspidal automorphic representations corresponding to Siegel modular forms -- Lecture 7: Local representation theory of GSp4(ℚp) -- Lecture 8: Bessel models and applications -- Lecture 9: Analytic and arithmetic properties of GSp4 x GL2 L-functions -- Lecture 10: Integral representation of the standard L-function. 000890430 506__ $$aAccess limited to authorized users. 000890430 520__ $$aThis monograph introduces two approaches to studying Siegel modular forms: the classical approach as holomorphic functions on the Siegel upper half space, and the approach via representation theory on the symplectic group. By illustrating the interconnections shared by the two, this book fills an important gap in the existing literature on modular forms. It begins by establishing the basics of the classical theory of Siegel modular forms, and then details more advanced topics. After this, much of the basic local representation theory is presented. Exercises are featured heavily throughout the volume, the solutions of which are helpfully provided in an appendix. Other topics considered include Hecke theory, Fourier coefficients, cuspidal automorphic representations, Bessel models, and integral representation. Graduate students and young researchers will find this volume particularly useful. It will also appeal to researchers in the area as a reference volume. Some knowledge of GL(2) theory is recommended, but there are a number of appendices included if the reader is not already familiar. 000890430 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed May 17, 2019). 000890430 650_0 $$aForms, Modular. 000890430 830_0 $$aLecture notes in mathematics (Springer-Verlag) ;$$v2240. 000890430 852__ $$bebk 000890430 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-15675-6$$zOnline Access$$91397441.1 000890430 909CO $$ooai:library.usi.edu:890430$$pGLOBAL_SET 000890430 980__ $$aEBOOK 000890430 980__ $$aBIB 000890430 982__ $$aEbook 000890430 983__ $$aOnline 000890430 994__ $$a92$$bISE