000890541 000__ 05139cam\a2200529Ii\4500 000890541 001__ 890541 000890541 005__ 20230306150109.0 000890541 006__ m\\\\\o\\d\\\\\\\\ 000890541 007__ cr\cn\nnnunnun 000890541 008__ 190521s2019\\\\si\\\\\\ob\\\\000\0\eng\d 000890541 019__ $$a1105196731 000890541 020__ $$a9789811051630$$q(electronic book) 000890541 020__ $$a9811051631$$q(electronic book) 000890541 020__ $$z9789811051623 000890541 0247_ $$a10.1007/978-981-10-5 000890541 035__ $$aSP(OCoLC)on1101966681 000890541 035__ $$aSP(OCoLC)1101966681$$z(OCoLC)1105196731 000890541 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dEBLCP$$dGW5XE$$dOCLCF$$dLQU$$dUKMGB 000890541 049__ $$aISEA 000890541 050_4 $$aTK3401 000890541 08204 $$a621.319/37$$223 000890541 1001_ $$aQiu, Zhibin,$$eauthor. 000890541 24510 $$aAir Insulation Prediction Theory and Applications /$$cZhibin Qiu, Jiangjun Ruan and Shengwen Shu. 000890541 264_1 $$aSingapore :$$bSpringer,$$c[2019] 000890541 300__ $$a1 online resource. 000890541 336__ $$atext$$btxt$$2rdacontent 000890541 337__ $$acomputer$$bc$$2rdamedia 000890541 338__ $$aonline resource$$bcr$$2rdacarrier 000890541 4901_ $$aPower systems 000890541 504__ $$aIncludes bibliographical references. 000890541 5050_ $$aIntro; Preface; Contents; About the Authors; 1 Background of Air Insulation Prediction Research; 1.1 Air Discharge Research and Development; 1.1.1 Air Discharge Tests; 1.1.2 Classical Discharge Theories; 1.1.3 Physical Models of Air Discharge; 1.1.4 Inspirations from Existing Research; 1.2 Research Assumption of Air Insulation Prediction; 1.2.1 Research Ideas; 1.2.2 Implementation Method; 1.2.3 Key Technologies; 1.3 Contents of This Book; References; 2 Theoretical Foundation of Air Insulation Prediction; 2.1 Influence Factors of Air Discharge; 2.1.1 Gap Structure 000890541 5058_ $$a2.1.2 Applied Voltage Waveform2.1.3 Atmospheric Environment; 2.2 Energy Storage Features of Air Gap; 2.2.1 Electric Field Features; 2.2.2 Impulse Voltage Waveform Features; 2.2.3 Energy Storage Features; 2.3 Space Mapping Idea and Its Application; 2.3.1 Basic Idea of Space Mapping; 2.3.2 Application of Space Mapping in Insulation Prediction; 2.4 Brief Summary; References; 3 Air Gap Discharge Voltage Prediction Model; 3.1 Algorithm Selection of Prediction Model; 3.1.1 Applications of Artificial Intelligence Algorithms; 3.1.2 Basis for Algorithm Selection; 3.2 Fundamental Theory of SVM 000890541 5058_ $$a3.2.1 Statistical Learning Theory3.2.2 Support Vector Classifier; 3.3 Parameter Optimization Methods; 3.3.1 Cross Validation; 3.3.2 Grid Search Algorithm; 3.3.3 Genetic Algorithm; 3.3.4 Particle Swarm Optimization Algorithm; 3.4 Feature Dimension Reduction Methods; 3.4.1 Normalization Processing; 3.4.2 Correlation Analysis Method; 3.4.3 Principal Component Analysis Method; 3.5 Sample Selection Method; 3.6 Error Analysis Method; 3.7 Implementation Process of the Prediction Model; 3.8 Brief Summary; References; 4 Corona Onset Voltage Prediction of Electrode Structures; 4.1 Corona Discharge 000890541 5058_ $$a4.1.1 Basic Characteristics of Corona Discharge4.1.2 Corona Onset Voltage and Inception Field Strength; 4.2 Corona Onset Voltage Prediction of Rod-Plane Electrodes; 4.2.1 Training and Test Sample Set; 4.2.2 SVM Prediction Results and Analysis; 4.2.3 Comparison with Other Prediction Methods; 4.3 Corona Onset Voltage Prediction of Stranded Conductors; 4.3.1 Electric Field Analysis of the Stranded Conductor; 4.3.2 Corona Onset Voltage Prediction of Single Stranded Conductors; 4.3.3 Comparison with Other Prediction Methods; 4.4 DC Corona Onset Voltage Prediction of Valve Hall Fittings 000890541 5058_ $$a4.4.1 Corona Tests4.4.2 Corona Onset Voltage Prediction; 4.4.3 Result Analysis and Discussions; 4.5 Brief Summary; References; 5 Power Frequency Breakdown Voltage Prediction of Air Gaps; 5.1 Air Gap Breakdown Characteristics Under Steady-State Voltage; 5.1.1 Breakdown in Uniform Electric Field; 5.1.2 Breakdown in Slightly Uneven Electric Field; 5.1.3 Breakdown in Extremely Nonuniform Electric Field; 5.2 Breakdown Voltage Prediction of Typical Short Air Gaps; 5.2.1 Power Frequency Breakdown Voltages of Typical Air Gaps; 5.2.2 Analysis of the Electric Field Distributions 000890541 506__ $$aAccess limited to authorized users. 000890541 520__ $$aThis book proposes the air insulation prediction theory and method in the subject of electrical engineering. Prediction of discharge voltage in different cases are discussed and worked out by simulation. After decades, now bottlenecks of traditional air discharge theories can be solved with this book. Engineering applications of the theory in air gap discharge voltage prediction are introduced. This book serves as reference for graduate students, scientific research personnel and engineering staff in the related fields. 000890541 588__ $$aOnline resource; title from PDF title page (viewed May 22, 2019). 000890541 650_0 $$aElectric insulators and insulation. 000890541 650_0 $$aElectric discharges. 000890541 7001_ $$aRuan, Jiangjun,$$eauthor. 000890541 7001_ $$aShu, Shengwen,$$eauthor. 000890541 830_0 $$aPower systems. 000890541 852__ $$bebk 000890541 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-981-10-5163-0$$zOnline Access$$91397441.1 000890541 909CO $$ooai:library.usi.edu:890541$$pGLOBAL_SET 000890541 980__ $$aEBOOK 000890541 980__ $$aBIB 000890541 982__ $$aEbook 000890541 983__ $$aOnline 000890541 994__ $$a92$$bISE