000890838 000__ 03061cam\a2200481M\\4500 000890838 001__ 890838 000890838 005__ 20230306150124.0 000890838 006__ m\\\\\o\\d\\\\\\\\ 000890838 007__ cr\un\nnnunnun 000890838 008__ 190606s2019\\\\sz\\\\\\ob\\\\001\0\eng\d 000890838 019__ $$a1103467515$$a1105622297 000890838 020__ $$a9783030164898$$q(electronic book) 000890838 020__ $$a3030164896$$q(electronic book) 000890838 020__ $$z3030164888 000890838 020__ $$z9783030164881 000890838 035__ $$aSP(OCoLC)on1105174115 000890838 035__ $$aSP(OCoLC)1105174115$$z(OCoLC)1103467515$$z(OCoLC)1105622297 000890838 040__ $$aLQU$$beng$$erda$$cLQU$$dGW5XE$$dYDXIT$$dOCLCF$$dYDX$$dSTF$$dUKMGB 000890838 049__ $$aISEA 000890838 050_4 $$aQA323$$b.C63 2019 000890838 08204 $$a515.7$$223 000890838 1001_ $$aCobzas, Stefan,$$eauthor. 000890838 24510 $$aLipschitz functions /$$cŞtefan Cobzaş, Radu Miculescu, Adriana Nicolae. 000890838 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2019] 000890838 300__ $$a1 online resource 000890838 336__ $$atext$$btxt$$2rdacontent 000890838 337__ $$acomputer$$bc$$2rdamedia 000890838 338__ $$aonline resource$$bcr$$2rdacarrier 000890838 4901_ $$aLecture notes in mathematics ;$$v2241 000890838 504__ $$aIncludes bibliographical references and index. 000890838 5050_ $$aPrerequisites. -- Basic Facts Concerning Lipschitz Functions. -- Relations with Other Classes of Functions. -- Extension Results for Lipschitz Mappings. -- Extension Results for Lipschitz Mappings in Geodesic Spaces. -- Approximations Involving Lipschitz Functions. -- Lipschitz Isomorphisms of Metric Spaces. -- Banach Spaces of Lipschitz Functions. 000890838 506__ $$aAccess limited to authorized users. 000890838 520__ $$aThe aim of this book is to present various facets of the theory and applications of Lipschitz functions, starting with classical and culminating with some recent results. Among the included topics we mention: characterizations of Lipschitz functions and relations with other classes of functions, extension results for Lipschitz functions and Lipschitz partitions of unity, Lipschitz free Banach spaces and their applications, compactness properties of Lipschitz operators, Bishop-Phelps type results for Lipschitz functionals, applications to best approximation in metric and in metric linear spaces, Kantorovich-Rubinstein norm and applications to duality in the optimal transport problem, Lipschitz mappings on geodesic spaces. The prerequisites are basic results in real analysis, functional analysis, measure theory (including vector measures) and topology, which, for reader's convenience, are surveyed in the first chapter of the book. 000890838 588__ $$aDescription based on online resource; title from digital title page (viewed on July 09, 2019). 000890838 650_0 $$aLipschitz spaces. 000890838 7001_ $$aMiculescu, Radu,$$eauthor. 000890838 7001_ $$aNicolae, Adriana,$$eauthor. 000890838 77608 $$iPrint version$$z3030164888$$z9783030164881$$w(OCoLC)1089200196 000890838 830_0 $$aLecture notes in mathematics (Springer-Verlag) ;$$v2241. 000890838 85280 $$bebk$$hSpringerLink 000890838 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-16489-8$$zOnline Access$$91397441.1 000890838 909CO $$ooai:library.usi.edu:890838$$pGLOBAL_SET 000890838 980__ $$aEBOOK 000890838 980__ $$aBIB 000890838 982__ $$aEbook 000890838 983__ $$aOnline 000890838 994__ $$a92$$bISE