000890838 000__ 03061cam\a2200481M\\4500
000890838 001__ 890838
000890838 005__ 20230306150124.0
000890838 006__ m\\\\\o\\d\\\\\\\\
000890838 007__ cr\un\nnnunnun
000890838 008__ 190606s2019\\\\sz\\\\\\ob\\\\001\0\eng\d
000890838 019__ $$a1103467515$$a1105622297
000890838 020__ $$a9783030164898$$q(electronic book)
000890838 020__ $$a3030164896$$q(electronic book)
000890838 020__ $$z3030164888
000890838 020__ $$z9783030164881
000890838 035__ $$aSP(OCoLC)on1105174115
000890838 035__ $$aSP(OCoLC)1105174115$$z(OCoLC)1103467515$$z(OCoLC)1105622297
000890838 040__ $$aLQU$$beng$$erda$$cLQU$$dGW5XE$$dYDXIT$$dOCLCF$$dYDX$$dSTF$$dUKMGB
000890838 049__ $$aISEA
000890838 050_4 $$aQA323$$b.C63 2019
000890838 08204 $$a515.7$$223
000890838 1001_ $$aCobzas, Stefan,$$eauthor.
000890838 24510 $$aLipschitz functions /$$cŞtefan Cobzaş, Radu Miculescu, Adriana Nicolae.
000890838 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2019]
000890838 300__ $$a1 online resource
000890838 336__ $$atext$$btxt$$2rdacontent
000890838 337__ $$acomputer$$bc$$2rdamedia
000890838 338__ $$aonline resource$$bcr$$2rdacarrier
000890838 4901_ $$aLecture notes in mathematics ;$$v2241
000890838 504__ $$aIncludes bibliographical references and index.
000890838 5050_ $$aPrerequisites. -- Basic Facts Concerning Lipschitz Functions. -- Relations with Other Classes of Functions. -- Extension Results for Lipschitz Mappings. -- Extension Results for Lipschitz Mappings in Geodesic Spaces. -- Approximations Involving Lipschitz Functions. -- Lipschitz Isomorphisms of Metric Spaces. -- Banach Spaces of Lipschitz Functions.
000890838 506__ $$aAccess limited to authorized users.
000890838 520__ $$aThe aim of this book is to present various facets of the theory and applications of Lipschitz functions, starting with classical and culminating with some recent results. Among the included topics we mention: characterizations of Lipschitz functions and relations with other classes of functions, extension results for Lipschitz functions and Lipschitz partitions of unity, Lipschitz free Banach spaces and their applications, compactness properties of Lipschitz operators, Bishop-Phelps type results for Lipschitz functionals, applications to best approximation in metric and in metric linear spaces, Kantorovich-Rubinstein norm and applications to duality in the optimal transport problem, Lipschitz mappings on geodesic spaces. The prerequisites are basic results in real analysis, functional analysis, measure theory (including vector measures) and topology, which, for reader's convenience, are surveyed in the first chapter of the book.
000890838 588__ $$aDescription based on online resource; title from digital title page (viewed on July 09, 2019).
000890838 650_0 $$aLipschitz spaces.
000890838 7001_ $$aMiculescu, Radu,$$eauthor.
000890838 7001_ $$aNicolae, Adriana,$$eauthor.
000890838 77608 $$iPrint version$$z3030164888$$z9783030164881$$w(OCoLC)1089200196
000890838 830_0 $$aLecture notes in mathematics (Springer-Verlag) ;$$v2241.
000890838 85280 $$bebk$$hSpringerLink
000890838 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-16489-8$$zOnline Access$$91397441.1
000890838 909CO $$ooai:library.usi.edu:890838$$pGLOBAL_SET
000890838 980__ $$aEBOOK
000890838 980__ $$aBIB
000890838 982__ $$aEbook
000890838 983__ $$aOnline
000890838 994__ $$a92$$bISE