000898698 000__ 03458cam\a2200457Ii\4500 000898698 001__ 898698 000898698 005__ 20230306150247.0 000898698 006__ m\\\\\o\\d\\\\\\\\ 000898698 007__ cr\cn\nnnunnun 000898698 008__ 190709s2019\\\\sz\\\\\\ob\\\\000\0\eng\d 000898698 019__ $$a1110226137$$a1110736122$$a1111676531$$a1112115230$$a1112472504$$a1114017836 000898698 020__ $$a9783030109042$$q(electronic book) 000898698 020__ $$a3030109046$$q(electronic book) 000898698 020__ $$z9783030109035 000898698 0248_ $$a10.1007/978-3-030-10 000898698 035__ $$aSP(OCoLC)on1107699790 000898698 035__ $$aSP(OCoLC)1107699790$$z(OCoLC)1110226137$$z(OCoLC)1110736122$$z(OCoLC)1111676531$$z(OCoLC)1112115230$$z(OCoLC)1112472504$$z(OCoLC)1114017836 000898698 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dEBLCP$$dUKMGB$$dLQU$$dGW5XE$$dOCLCF 000898698 049__ $$aISEA 000898698 050_4 $$aTK6680.8.A15 000898698 08204 $$a006.696$$223 000898698 1001_ $$aWillomitzer, Florian,$$eauthor. 000898698 24510 $$aSingle-shot 3D sensing close to physical limits and information limits /$$cFlorian Willomitzer. 000898698 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2019] 000898698 300__ $$a1 online resource. 000898698 336__ $$atext$$btxt$$2rdacontent 000898698 337__ $$acomputer$$bc$$2rdamedia 000898698 338__ $$aonline resource$$bcr$$2rdacarrier 000898698 4901_ $$aSpringer theses,$$x2190-5061 000898698 504__ $$aIncludes bibliographical references. 000898698 5050_ $$aPreface, Scope of Work and Summary of Results -- Basics -- State of the Art: The Basic Principles of Optical 3D Metrology -- Introducing the Problem -- Solving the Problem with an Additional Source of Information -- Physical and Information Theoretical Limits of the Single-Shot 3D Movie Camera -- Further Improvements of the Single-Shot 3D Movie Camera -- Algorithmic Implementations -- Results -- Comments, Future Prospects and Collection of Ideas -- Summary and Conclusion. 000898698 506__ $$aAccess limited to authorized users. 000898698 520__ $$aThis thesis discusses the physical and information theoretical limits of optical 3D metrology, and, based on these principal considerations, introduces a novel single-shot 3D video camera that works close to these limits. There are serious obstacles for a "perfect" 3D-camera: The author explains that it is impossible to achieve a data density better than one third of the available video pixels. Available single-shot 3D cameras yet display much lower data density, because there is one more obstacle: The object surface must be "encoded" in a non-ambiguous way, commonly by projecting sophisticated patterns. However, encoding devours space-bandwidth and reduces the output data density. The dissertation explains how this profound dilemma of 3D metrology can be solved, exploiting just two synchronized video cameras and a static projection pattern. The introduced single-shot 3D video camera, designed for macroscopic live scenes, displays an unprecedented quality and density of the 3D point cloud. The lateral resolution and depth precision are limited only by physics. Like a hologram, each movie-frame encompasses the full 3D information about the object surface and the observation perspective can be varied while watching the 3D movie. 000898698 588__ $$aOnline resource; title from PDF title page (viewed July 10, 2019). 000898698 650_0 $$a3-D video (Three-dimensional imaging) 000898698 650_0 $$aDigital video. 000898698 830_0 $$aSpringer theses. 000898698 852__ $$bebk 000898698 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-10904-2$$zOnline Access$$91397441.1 000898698 909CO $$ooai:library.usi.edu:898698$$pGLOBAL_SET 000898698 980__ $$aEBOOK 000898698 980__ $$aBIB 000898698 982__ $$aEbook 000898698 983__ $$aOnline 000898698 994__ $$a92$$bISE