000914693 000__ 03179cam\a2200457Ia\4500 000914693 001__ 914693 000914693 005__ 20230306150406.0 000914693 006__ m\\\\\o\\d\\\\\\\\ 000914693 007__ cr\un\nnnunnun 000914693 008__ 190921s2019\\\\sz\\\\\\ob\\\\000\0\eng\d 000914693 019__ $$a1121273894 000914693 020__ $$a9783030254704$$q(electronic book) 000914693 020__ $$a3030254704$$q(electronic book) 000914693 0247_ $$a10.1007/978-3-030-25 000914693 035__ $$aSP(OCoLC)on1120694162 000914693 035__ $$aSP(OCoLC)1120694162$$z(OCoLC)1121273894 000914693 040__ $$aEBLCP$$beng$$cEBLCP$$dGW5XE$$dLQU$$dOCLCF 000914693 049__ $$aISEA 000914693 050_4 $$aTK7875 000914693 08204 $$a621.381$$223 000914693 1001_ $$aWen, Haoran. 000914693 24510 $$aToward inertial-navigation-on-chip :$$bthe physics and performance scaling of multi-degree-of-freedom resonant MEMS gyroscopes /$$cHaoran Wen. 000914693 260__ $$aCham :$$bSpringer,$$c2019. 000914693 300__ $$a1 online resource (134 pages). 000914693 336__ $$atext$$btxt$$2rdacontent 000914693 337__ $$acomputer$$bc$$2rdamedia 000914693 338__ $$aonline resource$$bcr$$2rdacarrier 000914693 4901_ $$aSpringer theses,$$x2190-5061 000914693 504__ $$aIncludes bibliographical references. 000914693 506__ $$aAccess limited to authorized users. 000914693 520__ $$aThis thesis develops next-generation multi-degree-of-freedom gyroscopes and inertial measurement units (IMU) using micro-electromechanical-systems (MEMS) technology. It covers both a comprehensive study of the physics of resonator gyroscopes and novel micro/nano-fabrication solutions to key performance limits in MEMS resonator gyroscopes. Firstly, theoretical and experimental studies of physical phenomena including mode localization, nonlinear behavior, and energy dissipation provide new insights into challenges like quadrature errors and flicker noise in resonator gyroscope systems. Secondly, advanced designs and micro/nano-fabrication methods developed in this work demonstrate valuable applications to a wide range of MEMS/NEMS devices. In particular, the HARPSS+ process platform established in this thesis features a novel slanted nano-gap transducer, which enabled the first wafer-level-packaged single-chip IMU prototype with co-fabricated high-frequency resonant triaxial gyroscopes and high-bandwidth triaxial micro-gravity accelerometers. This prototype demonstrates performance amongst the highest to date, with unmatched robustness and potential for flexible substrate integration and ultra-low-power operation. This thesis shows a path toward future low-power IMU-based applications including wearable inertial sensors, health informatics, and personal inertial navigation. 000914693 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed September 25, 2019). 000914693 650_0 $$aInertial navigation. 000914693 650_0 $$aMicroelectromechanical systems. 000914693 650_0 $$aGyroscopes. 000914693 77608 $$iPrint version:$$aWen, Haoran$$tToward Inertial-Navigation-On-Chip : The Physics and Performance Scaling of Multi-Degree-Of-Freedom Resonant MEMS Gyroscopes$$dCham : Springer,c2019$$z9783030254698 000914693 830_0 $$aSpringer theses. 000914693 852__ $$bebk 000914693 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-25470-4$$zOnline Access$$91397441.1 000914693 909CO $$ooai:library.usi.edu:914693$$pGLOBAL_SET 000914693 980__ $$aEBOOK 000914693 980__ $$aBIB 000914693 982__ $$aEbook 000914693 983__ $$aOnline 000914693 994__ $$a92$$bISE