000914839 000__ 05011cam\a2200529Ii\4500 000914839 001__ 914839 000914839 005__ 20230306150545.0 000914839 006__ m\\\\\o\\d\\\\\\\\ 000914839 007__ cr\cn\nnnunnun 000914839 008__ 190926s2019\\\\sz\a\\\\o\\\\\101\0\eng\d 000914839 020__ $$a9783030314231$$q(electronic book) 000914839 020__ $$a3030314235$$q(electronic book) 000914839 020__ $$z9783030314224 000914839 0247_ $$a10.1007/978-3-030-31423-1$$2doi 000914839 035__ $$aSP(OCoLC)on1121047055 000914839 035__ $$aSP(OCoLC)1121047055 000914839 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dUKMGB$$dEBLCP 000914839 049__ $$aISEA 000914839 050_4 $$aTK5105.88815 000914839 08204 $$a025.042/7$$223 000914839 1112_ $$aSummer School on Reasoning Web$$n(15th :$$d2019 :$$cBolzano, Italy) 000914839 24510 $$aReasoning web :$$bexplainable artificial intelligence : 15th International Summer School 2019, Bolzano, Italy, September 20-24, 2019, Tutorial lectures /$$cMarkus Krötzsch, Daria Stepanova (eds.). 000914839 264_1 $$aCham, Switzerland :$$bSpringer,$$c2019. 000914839 300__ $$a1 online resource (xi, 283 pages) :$$billustrations. 000914839 336__ $$atext$$btxt$$2rdacontent 000914839 337__ $$acomputer$$bc$$2rdamedia 000914839 338__ $$aonline resource$$bcr$$2rdacarrier 000914839 4901_ $$aLecture notes in computer science ;$$v11810 000914839 4901_ $$aLNCS sublibrary. SL 3, Information systems and applications, incl. Internet/Web, and HCI 000914839 500__ $$aIncludes author index. 000914839 5050_ $$aIntro; Preface; Organization; Reasoning Web 2019 Sponsors; Contents; Classical Algorithms for Reasoning and Explanation in Description Logics; 1 Introduction; 2 Description Logics; 2.1 Syntax; 2.2 Semantics; 2.3 Reasoning Problems; 2.4 Reductions Between Reasoning Problems; 3 Tableau Procedures; 3.1 Deciding Concept Satisfiability; 3.2 TBox Reasoning; 4 Axiom Pinpointing; 4.1 Computing One Justification; 4.2 Computing All Justifications; 4.3 Computing All Repairs; 4.4 Computing Justifications and Repairs Using SAT Solvers; 5 Summary and Outlook; A Appendix; A.1 Computational Complexity 000914839 5058_ $$aA.2 Propositional Logic and SATReferences; Explanation-Friendly Query Answering Under Uncertainty; 1 Introduction; 2 The Datalog+/- Family of Ontology Languages; 2.1 Preliminary Concepts and Notations; 2.2 Syntax and Semantics of Datalog+/-; 2.3 Conjunctive Query Answering; 2.4 Datalog+/- Fragments: In Search of Decidability and Tractability; 3 Query Answering over Probabilistic Knowledge Bases; 3.1 Brief Overview of Basic Probabilistic Graphical Models; 3.2 Probabilistic Datalog+/-; 3.3 Towards Explainable Probabilistic Ontological Reasoning 000914839 5058_ $$a4 Inconsistency-Tolerant Query Answering with Datalog+/-4.1 Relationship with (Classical) Consistent Answers; 4.2 Relationship with IAR Semantics; 4.3 Lazy Answers; 4.4 Towards Explainable Inconsistency-Tolerant Query Answering; 5 Discussion and Future Research Directions; References; Provenance in Databases: Principles and Applications; 1 Introduction; 2 Provenance; 3 Example Applications; 4 Beyond Relational Provenance; 5 Outlook; References; Knowledge Representation and Rule Mining in Entity-Centric Knowledge Bases; 1 Introduction; 1.1 Knowledge Bases; 1.2 Applications 000914839 5058_ $$a1.3 Knowledge Representation and Rule Mining2 Knowledge Representation; 2.1 Entities; 2.2 Classes; 2.3 Relations; 2.4 Knowledge Bases; 2.5 The Semantic Web; 2.6 Challenges in Knowledge Representation; 3 Rule Mining; 3.1 Rules; 3.2 Rule Mining; 3.3 Rule Mining Approaches; 3.4 Related Approaches; 3.5 Challenges in Rule Mining; 4 Representation Learning; 4.1 Embedding; 4.2 Neural Networks; 4.3 Knowledge Base Embeddings; 4.4 Challenges in Representation Learning; 5 Conclusion; A Computation of Support and Confidence; References; Explaining Data with Formal Concept Analysis; 1 Introduction; 2 TL 000914839 5058_ $$aDR -- Formal Concept Analysis in a Nutshell3 Concept Lattices; 3.1 Formal Contexts and Cross Tables; 3.2 The Derivation Operators; 3.3 Formal Concepts, Extent and Intent; 3.4 Conceptual Hierarchy; 3.5 Concept Lattice Diagrams; 3.6 Supremum and Infimum; 3.7 Complete Lattices; 3.8 The Basic Theorem of FCA; 3.9 Computing All Concepts of a Context; 3.10 Drawing Concept Lattices; 3.11 Clarifying and Reducing a Formal Context; 3.12 Additive and Nested Line Diagrams; 4 Closure Systems; 4.1 Definition and Examples; 4.2 The Next Closure Algorithm; 5 Implications; 5.1 Implications of a Formal Context 000914839 506__ $$aAccess limited to authorized users. 000914839 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed September 26, 2019). 000914839 650_0 $$aSemantic Web$$vCongresses. 000914839 650_0 $$aSemantic computing$$vCongresses. 000914839 7001_ $$aKrötzsch, Markus,$$eeditor. 000914839 7001_ $$aStepanova, Daria,$$eeditor. 000914839 830_0 $$aLecture notes in computer science ;$$v11810. 000914839 830_0 $$aLNCS sublibrary.$$nSL 3,$$pInformation systems and applications, incl. Internet/Web, and HCI. 000914839 852__ $$bebk 000914839 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-31423-1$$zOnline Access$$91397441.1 000914839 909CO $$ooai:library.usi.edu:914839$$pGLOBAL_SET 000914839 980__ $$aEBOOK 000914839 980__ $$aBIB 000914839 982__ $$aEbook 000914839 983__ $$aOnline 000914839 994__ $$a92$$bISE