000915798 000__ 03231cam\a2200493Ii\4500 000915798 001__ 915798 000915798 005__ 20230306150506.0 000915798 006__ m\\\\\o\\d\\\\\\\\ 000915798 007__ cr\cn\nnnunnun 000915798 008__ 191014s2019\\\\sz\a\\\\ob\\\\001\0\eng\d 000915798 019__ $$a1126005931 000915798 020__ $$a9783030303839$$q(electronic book) 000915798 020__ $$a3030303837$$q(electronic book) 000915798 020__ $$z9783030303822 000915798 0247_ $$a10.1007/978-3-030-30383-9$$2doi 000915798 0247_ $$a10.1007/978-3-030-30 000915798 035__ $$aSP(OCoLC)on1122932914 000915798 035__ $$aSP(OCoLC)1122932914$$z(OCoLC)1126005931 000915798 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP$$dLQU$$dOCLCF$$dUKMGB 000915798 049__ $$aISEA 000915798 050_4 $$aQB529 000915798 08204 $$a523.5/8$$223 000915798 1001_ $$aMontagud-Camps, Victor,$$eauthor. 000915798 24510 $$aTurbulent heating and anisotropy in the solar wind :$$ba numerical study /$$cVictor Montagud-Camps. 000915798 264_1 $$aCham, Switzerland :$$bSpringer,$$c2019. 000915798 300__ $$a1 online resource (xvii, 123 pages) :$$billustrations. 000915798 336__ $$atext$$btxt$$2rdacontent 000915798 337__ $$acomputer$$bc$$2rdamedia 000915798 338__ $$aonline resource$$bcr$$2rdacarrier 000915798 4901_ $$aSpringer theses,$$x2190-5053 000915798 500__ $$a"Doctoral thesis accepted by Paris-Sud University, Orsay, France." 000915798 504__ $$aIncludes bibliographical references and index. 000915798 5050_ $$aIntroduction -- Solar Wind -- Plasma description -- Turbulence -- Solar Wind turbulence -- Plan of this thesis -- The Maltese Cross revisited -- Parameters and initial conditions -- Defining spectral properties in EBM simulations -- Results -- Discussion -- Can the Maltese Cross heat? -- Paper ApJ 2018: "Turbulent Heating between 0.2 and 1 au: A Numerical Study" -- Heating fast winds -- Conclusions and future work -- Conclusions -- Future work: Anisotropy temperature description -- Appendix. 000915798 506__ $$aAccess limited to authorized users. 000915798 520__ $$aThis book presents two important new findings. First, it demonstrates from first principles that turbulent heating offers an explanation for the non-adiabatic decay of proton temperature in solar wind. Until now, this was only proved with reduced or phenomenological models. Second, the book demonstrates that the two types of anisotropy of turbulent fluctuations that are observed in solar wind at 1AU originate not only from two distinct classes of conditions near the Sun but also from the imbalance in Alfvén wave populations. These anisotropies do not affect the overall turbulent heating if we take into account the relation observed in solar wind between anisotropy and Alfvén wave imbalance. In terms of the methods used to obtain these achievements, the author shows the need to find a very delicate balance between turbulent decay and expansion losses, so as to directly solve the magnetohydrodynamic equations, including the wind expansion effects. 000915798 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed October 14, 2019). 000915798 650_0 $$aSolar wind. 000915798 650_0 $$aTurbulence. 000915798 650_0 $$aMagnetohydrodynamics. 000915798 830_0 $$aSpringer theses. 000915798 852__ $$bebk 000915798 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-30383-9$$zOnline Access$$91397441.1 000915798 909CO $$ooai:library.usi.edu:915798$$pGLOBAL_SET 000915798 980__ $$aEBOOK 000915798 980__ $$aBIB 000915798 982__ $$aEbook 000915798 983__ $$aOnline 000915798 994__ $$a92$$bISE