000916235 000__ 01571cam\a2200433Ii\4500 000916235 001__ 916235 000916235 005__ 20230306150531.0 000916235 006__ m\\\\\o\\d\\\\\\\\ 000916235 007__ cr\cn\nnnunnun 000916235 008__ 191106s2019\\\\sz\a\\\\ob\\\\000\0\eng\d 000916235 020__ $$a9783030295301$$q(electronic book) 000916235 020__ $$a3030295303$$q(electronic book) 000916235 020__ $$z9783030295295 000916235 0247_ $$a10.1007/978-3-030-29530-1$$2doi 000916235 035__ $$aSP(OCoLC)on1126540215 000916235 035__ $$aSP(OCoLC)1126540215 000916235 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE 000916235 049__ $$aISEA 000916235 050_4 $$aQA331 000916235 08204 $$a515/.7242$$223 000916235 1001_ $$aFu, Xiaoyu,$$eauthor. 000916235 24510 $$aCarleman estimates for second order partial differential operators and applications :$$ba unified approach /$$cXiaoyu Fu, Qi Lü, Xu Zhang. 000916235 264_1 $$aCham, Switzerland :$$bSpringer,$$c2019. 000916235 300__ $$a1 online resource (xi, 127 pages) :$$billustrations. 000916235 336__ $$atext$$btxt$$2rdacontent 000916235 337__ $$acomputer$$bc$$2rdamedia 000916235 338__ $$aonline resource$$bcr$$2rdacarrier 000916235 4901_ $$aBCAM SpringerBriefs 000916235 504__ $$aIncludes bibliographical references. 000916235 506__ $$aAccess limited to authorized users. 000916235 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed November 6, 2019). 000916235 650_0 $$aCarleman theorem. 000916235 7001_ $$aLü, Qi,$$eauthor. 000916235 7001_ $$aZhang, Xu,$$eauthor. 000916235 830_0 $$aBCAM SpringerBriefs. 000916235 852__ $$bebk 000916235 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-29530-1$$zOnline Access$$91397441.1 000916235 909CO $$ooai:library.usi.edu:916235$$pGLOBAL_SET 000916235 980__ $$aEBOOK 000916235 980__ $$aBIB 000916235 982__ $$aEbook 000916235 983__ $$aOnline 000916235 994__ $$a92$$bISE