000924876 000__ 03195cam\a2200493Ia\4500 000924876 001__ 924876 000924876 005__ 20230306151158.0 000924876 006__ m\\\\\o\\d\\\\\\\\ 000924876 007__ cr\un\nnnunnun 000924876 008__ 200118s2020\\\\nyu\\\\\ob\\\\001\0\eng\d 000924876 020__ $$a9781071602645 000924876 020__ $$a1071602640 000924876 020__ $$z9781071602621 000924876 035__ $$aSP(OCoLC)on1136962949 000924876 035__ $$aSP(OCoLC)1136962949 000924876 040__ $$aEBLCP$$beng$$cEBLCP$$dGW5XE$$dOCLCF 000924876 049__ $$aISEA 000924876 050_4 $$aQA252$$b.L668 2019 000924876 08204 $$a512/.482$$223 000924876 1001_ $$aLoos, Ottmar. 000924876 24510 $$aSteinberg groups for Jordan pairs /$$cOttmar Loos, Erhard Neher. 000924876 260__ $$aNew York, NY :$$bBirkhäuser,$$c2020. 000924876 300__ $$a1 online resource (470 pages). 000924876 336__ $$atext$$btxt$$2rdacontent 000924876 337__ $$acomputer$$bc$$2rdamedia 000924876 338__ $$aonline resource$$bcr$$2rdacarrier 000924876 4901_ $$aProgress in Mathematics Ser. ;$$vv.332 000924876 504__ $$aIncludes bibliographical references and indexes. 000924876 5050_ $$aIntro -- Contents -- Preface -- Notation and Conventions -- CHAPTER I: GROUPS WITH COMMUTATOR RELATIONS -- 1. Nilpotent sets of roots -- 2. Reflection systems and root systems -- 3. Groups with commutator relations -- 4. Categories of groups with commutator relations -- 5. Weyl elements -- CHAPTER II: GROUPS ASSOCIATED WITH JORDAN PAIRS -- 6. Introduction to Jordan pairs -- 7. The projective elementary group I -- 8. The projective elementary group II -- 9. Groups over Jordan pairs -- CHAPTER III: STEINBERG GROUPS FOR PEIRCE GRADED JORDAN PAIRS -- 10. Peirce gradings 000924876 5058_ $$a11. Groups defined by Peirce gradings -- 12. Weyl elements for idempotent Peirce gradings -- 13. Groups defined by sets of idempotents -- CHAPTER IV: JORDAN GRAPHS -- 14. 3-graded root systems -- 15. Jordan graphs and 3-graded root systems -- 16. Local structure -- 17. Classification of arrows and vertices -- 18. Bases -- 19. Triangles -- CHAPTER V: STEINBERG GROUPS FOR ROOT GRADED JORDAN PAIRS -- 20. Root gradings -- 21. Groups defined by root gradings -- 22. The Steinberg group of a root graded Jordan pair -- 23. Cogs -- 24. Weyl elements for idempotent root gradings 000924876 5058_ $$a25. The monomial group -- 26. Centrality results -- CHAPTER VI: CENTRAL CLOSEDNESS -- 27. Statement of the main result and outline of the proof -- 28. Invariant alternating maps -- 29. Vanishing of the binary symbols -- 30. Vanishing of the ternary symbols -- 31. Definition of the partial sections -- 32. Proof of the relations -- Bibliography -- Subject Index -- Notation Index 000924876 506__ $$aAccess limited to authorized users. 000924876 588__ $$aDescription based on print version record. 000924876 650_0 $$aJordan algebras. 000924876 650_0 $$aRoot systems (Algebra) 000924876 650_0 $$aLie superalgebras. 000924876 650_0 $$aK-theory. 000924876 7001_ $$aNeher, Erhard,$$d1949- 000924876 77608 $$iPrint version:$$aLoos, Ottmar$$tSteinberg Groups for Jordan Pairs$$dNew York, NY : Springer Basel AG,c2020$$z9781071602621 000924876 830_0 $$aProgress in mathematics (Boston, Mass.) ;$$vv. 332. 000924876 852__ $$bebk 000924876 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-1-0716-0264-5$$zOnline Access$$91397441.1 000924876 909CO $$ooai:library.usi.edu:924876$$pGLOBAL_SET 000924876 980__ $$aEBOOK 000924876 980__ $$aBIB 000924876 982__ $$aEbook 000924876 983__ $$aOnline 000924876 994__ $$a92$$bISE