000929950 000__ 03296cam\a2200481Ii\4500 000929950 001__ 929950 000929950 005__ 20230306151301.0 000929950 006__ m\\\\\o\\d\\\\\\\\ 000929950 007__ cr\un\nnnunnun 000929950 008__ 200321s2020\\\\sz\\\\\\ob\\\\000\0\eng\d 000929950 019__ $$a1145558653 000929950 020__ $$a9783030383480$$q(electronic book) 000929950 020__ $$a3030383482$$q(electronic book) 000929950 020__ $$z3030383474 000929950 020__ $$z9783030383473 000929950 035__ $$aSP(OCoLC)on1145302337 000929950 035__ $$aSP(OCoLC)1145302337$$z(OCoLC)1145558653 000929950 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP 000929950 049__ $$aISEA 000929950 050_4 $$aQD549 000929950 08204 $$a541/.345$$223 000929950 1001_ $$aHan, Endao,$$eauthor. 000929950 24510 $$aTransient dynamics of concentrated particulate suspensions under shear /$$cEndao Han. 000929950 260__ $$a[S.l.] :$$bSPRINGER,$$c2020. 000929950 300__ $$a1 online resource 000929950 336__ $$atext$$btxt$$2rdacontent 000929950 337__ $$acomputer$$bc$$2rdamedia 000929950 338__ $$aonline resource$$bcr$$2rdacarrier 000929950 4901_ $$aSpringer theses 000929950 500__ $$a"Doctoral thesis accepted by the University of Chicago, IL, USA." 000929950 504__ $$aIncludes bibliographical references. 000929950 5050_ $$aChapter 1. Introduction -- Chapter 2. Ultrasound techniques for studying suspensions -- Chapter 3. Investigating impact-activated fronts with ultrasound -- Chapter 4. Modeling shear fronts in one dimension -- Chapter 5. Rheology in the shear jamming regime -- Chapter 6. Conclusions and outlook. 000929950 506__ $$aAccess limited to authorized users. 000929950 520__ $$aThis thesis demonstrates the first use of high-speed ultrasound imaging to non-invasively probe how the interior of a dense suspension responds to impact. Suspensions of small solid particles in a simple liquid can generate a rich set of dynamic phenomena that are of fundamental scientific interest because they do not conform to the typical behavior expected of either solids or liquids. Most remarkable is the highly counter-intuitive ability of concentrated suspensions to strongly thicken and even solidify when sheared or impacted. The understanding of the mechanism driving this solidification is, however, still limited, especially for the important transient stage while the response develops as a function of time. In this thesis, high-speed ultrasound imaging is introduced to track, for the first time, the transition from the flowing to the solidified state and directly observe the shock-like shear fronts that accompany this transition. A model is developed that agrees quantitatively with the experimental measurements. The combination of imaging techniques, experimental design, and modeling in this thesis represents a major breakthrough for the understanding of the dynamic response of dense suspensions, with important implications for a wide range of applications ranging from the handling of slurries to additive manufacturing. 000929950 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed April 9, 2020). 000929950 650_0 $$aSuspensions (Chemistry) 000929950 650_0 $$aShear flow. 000929950 77608 $$iPrint version:$$z3030383474$$z9783030383473$$w(OCoLC)1130248309 000929950 830_0 $$aSpringer theses. 000929950 852__ $$bebk 000929950 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-38348-0$$zOnline Access$$91397441.1 000929950 909CO $$ooai:library.usi.edu:929950$$pGLOBAL_SET 000929950 980__ $$aEBOOK 000929950 980__ $$aBIB 000929950 982__ $$aEbook 000929950 983__ $$aOnline 000929950 994__ $$a92$$bISE