000931579 000__ 03572cam\a2200481Ia\4500 000931579 001__ 931579 000931579 005__ 20230306151522.0 000931579 006__ m\\\\\o\\d\\\\\\\\ 000931579 007__ cr\un\nnnunnun 000931579 008__ 200418s2020\\\\sz\\\\\\ob\\\\001\0\eng\d 000931579 019__ $$a1153072817$$a1153320478 000931579 020__ $$a9783030401832$$q(electronic book) 000931579 020__ $$a3030401839$$q(electronic book) 000931579 020__ $$z9783030401825 000931579 020__ $$z3030401820 000931579 0247_ $$a10.1007/978-3-030-40183-2$$2doi 000931579 035__ $$aSP(OCoLC)on1151190653 000931579 035__ $$aSP(OCoLC)1151190653$$z(OCoLC)1153072817$$z(OCoLC)1153320478 000931579 040__ $$aEBLCP$$beng$$cEBLCP$$dGW5XE$$dEBLCP$$dYDX$$dUPM 000931579 049__ $$aISEA 000931579 050_4 $$aQA273 000931579 08204 $$a519.2$$223 000931579 1001_ $$aBrémaud, Pierre. 000931579 24510 $$aProbability theory and stochastic processes /$$cPierre Brémaud. 000931579 260__ $$aCham :$$bSpringer,$$c2020. 000931579 300__ $$a1 online resource (717 pages). 000931579 336__ $$atext$$btxt$$2rdacontent 000931579 337__ $$acomputer$$bc$$2rdamedia 000931579 338__ $$aonline resource$$bcr$$2rdacarrier 000931579 347__ $$atext file$$bPDF$$2rda 000931579 4901_ $$aUniversitext 000931579 504__ $$aIncludes bibliographical references and index. 000931579 5050_ $$aIntroduction.-Warming Up -- Integration Theory for Probability -- Probability and Expectation -- Convergence of random sequences -- Markov Chains -- Martingale Sequences -- Ergodic Sequences -- Generalities on Stochastic Processes -- Poisson Processes -- Continuous-Time Markov Chains -- Renewal Theory in Continuous Time -- Brownian Motion -- Wide-sense Stationary Stochastic Processes -- An Introduction to Itô's Calculus -- Appenndix: Number Theory and Linear Algebra -- Analysis -- Hilbert Spaces -- Z-Transforms -- Proof of Paul Lévy's Criterion -- Direct Riemann Integrability -- Bibliography -- Index. 000931579 506__ $$aAccess limited to authorized users. 000931579 520__ $$aThe ultimate objective of this book is to present a panoramic view of the main stochastic processes which have an impact on applications, with complete proofs and exercises. Random processes play a central role in the applied sciences, including operations research, insurance, finance, biology, physics, computer and communications networks, and signal processing. In order to help the reader to reach a level of technical autonomy sufficient to understand the presented models, this book includes a reasonable dose of probability theory. On the other hand, the study of stochastic processes gives an opportunity to apply the main theoretical results of probability theory beyond classroom examples and in a non-trivial manner that makes this discipline look more attractive to the applications-oriented student. One can distinguish three parts of this book. The first four chapters are about probability theory, Chapters 5 to 8 concern random sequences, or discrete-time stochastic processes, and the rest of the book focuses on stochastic processes and point processes. There is sufficient modularity for the instructor or the self-teaching reader to design a course or a study program adapted to her/his specific needs. This book is in a large measure self-contained. 000931579 588__ $$aDescription based on print version record. 000931579 650_0 $$aProbabilities. 000931579 77608 $$iPrint version:$$aBrémaud, Pierre$$tProbability Theory and Stochastic Processes$$dCham : Springer International Publishing AG,c2020$$z9783030401825 000931579 830_0 $$aUniversitext. 000931579 852__ $$bebk 000931579 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-40183-2$$zOnline Access$$91397441.1 000931579 909CO $$ooai:library.usi.edu:931579$$pGLOBAL_SET 000931579 980__ $$aEBOOK 000931579 980__ $$aBIB 000931579 982__ $$aEbook 000931579 983__ $$aOnline 000931579 994__ $$a92$$bISE