000938147 000__ 02993cam\a2200469Ia\4500 000938147 001__ 938147 000938147 005__ 20230306151746.0 000938147 006__ m\\\\\o\\d\\\\\\\\ 000938147 007__ cr\un\nnnunnun 000938147 008__ 200710s2020\\\\sz\\\\\\ob\\\\001\0\eng\d 000938147 019__ $$a1164494000$$a1182462861 000938147 020__ $$a9783030415280$$q(electronic book) 000938147 020__ $$a3030415287$$q(electronic book) 000938147 020__ $$z3030415279 000938147 020__ $$z9783030415273 000938147 0247_ $$a10.1007/978-3-030-41 000938147 035__ $$aSP(OCoLC)on1163939579 000938147 035__ $$aSP(OCoLC)1163939579$$z(OCoLC)1164494000$$z(OCoLC)1182462861 000938147 040__ $$aYDX$$beng$$cYDX$$dEBLCP$$dGW5XE$$dLQU 000938147 049__ $$aISEA 000938147 050_4 $$aQH324.8 000938147 08204 $$a570.1/13$$223 000938147 1001_ $$aFilippov, Alexander E. 000938147 24510 $$aCombined discrete and continual approaches in biological modelling /$$cAlexander E. Filippov, Stanislav N. Gorb. 000938147 260__ $$aCham :$$bSpringer,$$c2020. 000938147 300__ $$a1 online resource 000938147 336__ $$atext$$btxt$$2rdacontent 000938147 337__ $$acomputer$$bc$$2rdamedia 000938147 338__ $$aonline resource$$bcr$$2rdacarrier 000938147 4901_ $$aBiologically-Inspired Systems ;$$vv.16 000938147 504__ $$aIncludes bibliographical references and index. 000938147 5050_ $$aChapter 1. Introduction -- Chapter 2. Various methods of pattern formation -- Chapter 3. Clusterization of biological structures with high aspect ratio -- Chapter 4. Contact between biological attachment devices and rough -- Chapter 5. Anisotropic friction in biological systems -- Chapter 6. Mechanical interlocking of biological fasteners -- Chapter 7. Biomechanics at the microscale -- Chapter 8. Nanoscale pattern formation in biological surfaces -- Chapter 9. Ecology and evolution. 000938147 506__ $$aAccess limited to authorized users. 000938147 520__ $$aBasic laws of nature are rather simple, but observed biological structures and their dynamic behaviors are unbelievably complicated. This book is devoted to a study of this "strange" relationship by applying mathematical modeling to various structures and phenomena in biology, such as surface patterns, bioadhesion, locomotion, predator-prey behavior, seed dispersal, etc. and revealing a kind of self-organization in these phenomena. In spite of diversity of biological systems considered, two main questions are (1) what does self-organization in biology mean mathematically and (2) how one can apply this knowledge to generate new knowledge about behavior of particular biological system? We believe that this kind of "biomimetics" in computer will lead to better understanding of biological phenomena and possibly towards development of technical implications based on our modeling. 000938147 650_0 $$aBiological models. 000938147 7001_ $$aGorb, Stanislav. 000938147 77608 $$iPrint version: $$z3030415279$$z9783030415273$$w(OCoLC)1137829029 000938147 830_0 $$aBiologically-inspired systems ;$$v16. 000938147 852__ $$bebk 000938147 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-41528-0$$zOnline Access$$91397441.1 000938147 909CO $$ooai:library.usi.edu:938147$$pGLOBAL_SET 000938147 980__ $$aEBOOK 000938147 980__ $$aBIB 000938147 982__ $$aEbook 000938147 983__ $$aOnline 000938147 994__ $$a92$$bISE