000945408 000__ 02867cam\a2200481Mi\4500 000945408 001__ 945408 000945408 005__ 20230306152520.0 000945408 006__ m\\\\\o\\d\\\\\\\\ 000945408 007__ cr\nn\nnnunnun 000945408 008__ 201007s2020\\\\si\\\\\\o\\\\\|||\0\eng\d 000945408 019__ $$a1200028492 000945408 020__ $$a9811579571 000945408 020__ $$a9789811579578 000945408 020__ $$z9811579563 000945408 020__ $$z9789811579561 000945408 0247_ $$a10.1007/978-981-15-7957-8$$2doi 000945408 035__ $$aSP(OCoLC)on1204152114 000945408 035__ $$aSP(OCoLC)1204152114$$z(OCoLC)1200028492 000945408 040__ $$aSFB$$beng$$cSFB$$dOCLCO$$dYDX 000945408 049__ $$aISEA 000945408 050_4 $$aTA349-359 000945408 08204 $$a531$$223 000945408 1001_ $$aZhu, YinBo.$$eauthor. 000945408 24510 $$aPhase Behavior of Two-Dimensional Water Confined in Graphene Nanocapillaries /$$cby YinBo Zhu. 000945408 250__ $$a1st ed. 2020. 000945408 264_1 $$aSingapore :$$bSpringer Singapore :$$bImprint: Springer,$$c2020. 000945408 300__ $$a1 online resource (XVII, 118 pages) :$$billustrations. 000945408 336__ $$atext$$btxt$$2rdacontent 000945408 337__ $$acomputer$$bc$$2rdamedia 000945408 338__ $$aonline resource$$bcr$$2rdacarrier 000945408 4901_ $$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$$x2190-5053 000945408 5050_ $$aIntroduction -- Monolayer square-like ice between two graphene sheets -- Superheating of monolayer ice in graphene nanocapillaries -- AB-stacking bilayer square-like ice in graphene nanocapillaries -- AA-stacking bilayer ice in graphene nanocapillaries -- Trilayer ice in graphene nanocapillaries -- Compression limit of 2D water confined in graphene nanocapillaries -- Summary and future work -- Appendix A: Mechanical design on graphene-based materials. 000945408 506__ $$aAccess limited to authorized users. 000945408 520__ $$aIn this book, the authors use molecular dynamics simulations to conduct a comprehensive study of the compression/superheating limit and phase transition of 2D (monolayer, bilayer, and trilayer) water/ice constrained in graphene nanocapillaries. When subjected to nanoscale confinement and under ultrahigh pressure, water and ice behave quite differently than their bulk counterparts, partly because the van der Waals pressure can spark a water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquids. From a mechanical standpoint, this liquid-to-solid transformation characterizes the compression limit (or metastability limit) of 2D water. The findings presented here could help us to better understand the phase behavior of 2D confined water/ice. 000945408 650_0 $$aMechanics. 000945408 650_0 $$aMechanics, Applied. 000945408 650_0 $$aChemistry, Physical and theoretical. 000945408 650_0 $$aNanotechnology. 000945408 830_0 $$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$$x2190-5053 000945408 852__ $$bebk 000945408 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-981-15-7957-8$$zOnline Access$$91397441.1 000945408 909CO $$ooai:library.usi.edu:945408$$pGLOBAL_SET 000945408 980__ $$aEBOOK 000945408 980__ $$aBIB 000945408 982__ $$aEbook 000945408 983__ $$aOnline 000945408 994__ $$a92$$bISE