Linked e-resources

Details

Machine generated contents note: ch. 1 Introduction / J. Peters
References
ch. 2 Fundamental Considerations / Cor J. Peters
2.1. Introduction
2.2. Basic Thermodynamics
2.2.1. Homogeneous Functions
2.2.2. Thermodynamic Properties from Differentiation of Fundamental Equations
2.3. Deviation Functions
2.3.1. Residual Functions
2.3.2. Evaluation of Residual Functions
2.4. Mixing and Departure Functions
2.4.1. Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables
2.4.2. Departure Functions with Temperature, Pressure and Composition as the Independent Variables
2.5. Mixing and Excess Functions
2.6. Partial Molar Properties
2.7. Fugacity and Fugacity Coefficients
2.8. Activity Coefficients
2.9. The Phase Rule
2.10. Equilibrium Conditions
2.10.1. Phase Equilibria
2.10.2. Chemical Equilibria
2.11. Stability and the Critical State
2.11.1. Densities and Fields
2.11.2. Stability.

2.11.3. Critical State
References
ch. 3 The Virial Equation of State / J. P. Martin Trusler
3.1. Introduction
3.1.1. Temperature Dependence of the Virial Coefficients
3.1.2. Composition Dependence of the Virial Coefficients
3.1.3. Convergence of the Virial Series
3.1.4. The Pressure Series
3.2. Theoretical Background
3.2.1. Virial Coefficients of Hard-Core-Square-Well Molecules
3.3. Thermodynamic Properties of Gases
3.3.1. Perfect-gas and Residual Properties
3.3.2. Helmholtz Energy and Gibbs Energy
3.3.3. Perfect-Gas Properties
3.3.4. Residual Properties
3.4. Estimation of Second and Third Virial Coefficients
3.4.1. Application of Intermolecular Potential-energy Functions
3.4.2. Corresponding-states Methods
References
ch. 4 Cubic and Generalized van der Waals Equations of State / Ioannis G. Economou
4.1. Introduction
4.2. Cubic Equation of State Formulation
4.2.1. The van der Waals Equation of State (1873)
4.2.2. The Redlich and Kwong Equation of State (1949).

4.2.3. The Soave, Redlich and Kwong Equation of State (1972)
4.2.4. The Peng and Robinson Equation of State (1976)
4.2.5. The Patel and Teja (PT) Equation of State (1982)
4.2.6. The α Parameter
4.2.7. Volume Translation
4.2.8. The Elliott, Suresh and Donohue (ESD) Equation of State (1990)
4.2.9. Higher-Order Equations of State Rooted to the Cubic Equations of State
4.2.10. Extension of Cubic Equations of State to Mixtures
4.3. Applications
4.3.1. Pure Components
4.3.2. Oil and Gas Industry
Hydrocarbons and Petroleum Fractions
4.3.3. Chemical Industry
Polar and Hydrogen Bonding Fluids
4.3.4. Polymers
4.3.5. Transport Properties
4.4. Conclusions
References
ch. 5 Mixing and Combining Rules / Stanley I. Sandler
5.1. Introduction
5.2. The Virial Equation of State
5.3. Cubic Equations of State
5.3.1. Mixing Rules
5.3.2. Combining Rules
5.3.3. Non-Quadratic Mixing and Combining Rules
5.3.4. Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model.

5.4. Multi-Parameter Equations of State
5.4.1. Benedict, Webb, and Rubin Equation of State
5.4.2. Generalization with the Acentric Factor
5.4.3. Helmholtz-Function Equations of State
5.5. Mixing Rules for Hard Spheres and Association
5.5.1. Mixing and Combining Rules for SAFT
5.5.2. Cubic Plus Association Equation of State
References
ch. 6 The Corresponding-States Principle / James F. Ely
6.1. Introduction
6.2. Theoretical Considerations
6.3. Determination of Shape Factors
6.3.1. Other Reference Fluids
6.3.2. Exact Shape Factors
6.3.3. Shape Factors from Generalized Equations of State
6.4. Mixtures
6.4.1. van der Waals One-Fluid Theory
6.4.2. Mixture Corresponding-States Relations
6.5. Applications of Corresponding-States Theory
6.5.1. Extended Corresponding-States for Natural Gas Systems
6.5.2. Extended Lee-Kesler
6.5.3. Generalized Crossover Cubic Equation of State
6.6. Conclusions
References
ch. 7 Thermodynamics of Fluids at Meso and Nano Scales / Christopher E. Bertrand.

7.1. Introduction
7.2. Thermodynamic Approach to Meso-Heterogeneous Systems
7.2.1. Equilibrium Fluctuations
7.2.2. Local Helmholtz Energy
7.3. Applications of Meso-Thermodynamics
7.3.1. Van der Waals Theory of a Smooth Interface
7.3.2. Polymer Chain in a Dilute Solution
7.3.3. Building a Nanoparticle Through Self Assembly
7.3.4. Modulated Fluid Phases
7.4. Meso-Thermodynamics of Criticality
7.4.1. Critical Fluctuations
7.4.2. Scaling Relations
7.4.3. Near-Critical Interface
7.4.4. Divergence of Tolman's Length
7.5. Competition of Meso-Scales
7.5.1. Crossover to Tricriticality in Polymer Solutions
7.5.2. Tolman's Length in Polymer Solutions
7.5.3. Finite-size Scaling
7.6. Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation
7.6.1. Relaxation of Fluctuations
7.6.2. Critical Slowing Down
7.6.3. Homogeneous Nucleation
7.6.4. Spinodal Decomposition
7.7. Conclusion
References
ch. 8 SAFT Associating Fluids and Fluid Mixtures / Amparo Galindo.

8.1. Introduction
8.2. Statistical Mechanical Theories of Association and Wertheim's Theory
8.3. SAFT Equations of State
8.3.1. SAFT-HS and SAFT-HR
8.3.2. Soft-SAFT
8.3.3. SAFT-VR
8.3.4. PC-SAFT
8.3.5. Summary
8.4. Extensions of the SAFT Approach
8.4.1. Modelling the Critical Region
8.4.2. Polar Fluids
8.4.3. Ion-Containing Fluids
8.4.4. Modelling Inhomogeneous Fluids
8.4.5. Dense Phases: Liquid Crystals and Solids
8.5. Parameter Estimation: Towards more Predictive Approaches
8.5.1. Pure-component Parameter Estimation
8.5.2. Use of Quantum Mechanics in SAFT Equations of State
8.5.3. Unlike Binary Intermolecular Parameters
8.6. SAFT Group-Contribution Approaches
8.6.1. Homonuclear Group-Contribution Models in SAFT
8.6.2. Heteronuclear Group Contribution Models in SAFT
8.7. Concluding Remarks
References
ch. 9 Polydisperse Fluids / Dieter Browarzik
9.1. Introduction
9.2. Influence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution.

9.3. Approaches to Polydispersity
9.3.1. The Pseudo-component Method
9.3.2. Continuous Thermodynamics
9.4. Application to Real Systems
9.4.1. Polymer Systems
9.4.2. Petroleum Fluids, Asphaltenes, Waxes and Other Applications
9.5. Conclusions
References
ch. 10 Thermodynamic Behaviour of Fluids near Critical Points / Mikhail A. Anisimov
10.1. Introduction
10.2. General Theory of Critical Behaviour
10.2.1. Scaling Fields, Critical Exponents, and Critical Amplitudes
10.2.2. Parametric Equation of State
10.3. One-Component Fluids
10.3.1. Simple Scaling
10.3.2. Revised Scaling
10.3.3. Complete Scaling
10.3.4. Vapour-Liquid Equilibrium
10.3.5. Symmetric Corrections to Scaling
10.4. Binary Fluid Mixtures
10.4.1. Isomorphic Critical Behaviour of Mixtures
10.4.2. Incompressible Liquid Mixtures
10.4.3. Weakly Compressible Liquid Mixtures
10.4.4. Compressible Fluid Mixtures
10.4.5. Dilute Solutions
10.5. Crossover Critical Behaviour
10.5.1. Crossover from Ising-like to Mean-Field Critical Behaviour.

10.5.2. Effective Critical Exponents
10.5.3. Global Crossover Behaviour of Fluids
10.6. Discussion
Acknowledgements
References
ch. 11 Phase Behaviour of Ionic Liquid Systems / Cor J. Peters
11.1. Introduction
11.2. Phase Behaviour of Binary Ionic Liquid Systems
11.2.1. Phase Behaviour of (Ionic Liquid + Gas Mixtures)
11.2.2. Phase Behaviour of (Ionic Liquid + Water)
11.2.3. Phase Behaviour of (Ionic Liquid + Organic)
11.3. Phase Behaviour of Ternary Ionic Liquid Systems
11.3.1. Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic)
11.3.2. Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic)
11.3.3. Phase Behaviour of (Ionic Liquid + Water + Alcohol)
11.3.4. Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures
11.4. Modeling of the Phase Behaviour of Ionic Liquid Systems
11.4.1. Molecular Simulations
11.4.2. Excess Gibbs-energy Methods
11.4.3. Equation of State Modeling
11.4.4. Quantum Chemical Methods
References
ch. 12 Multi-parameter Equations of State for Pure Fluids and Mixtures / Roland Span.

12.1. Introduction
12.2. The Development of a Thermodynamic Property Formulation
12.3. Fitting an Equation of State to Experimental Data
12.3.1. Recent Nonlinear Fitting Methods
12.4. Pressure-Explicit Equations of State
12.4.1. Cubic Equations
12.4.2. The Benedict-Webb-Rubin Equation of State
12.4.3. The Bender Equation of State
12.4.4. The Jacobsen-Stewart Equation of State
12.4.5. Thermodynamic Properties from Pressure-Explicit Equations of State
12.5. Fundamental Equations
12.5.1. The Equation of Keenan, Keyes, Hill, and Moore
12.5.2. The Equations of Haar, Gallagher, and Kell
12.5.3. The Equation of Schmidt and Wagner
12.5.4. Reference Equations of Wagner
12.5.5. Technical Equations of Span and of Lemmon
12.5.6. Recent Equations of State.

Note continued


13.6. Concluding Remarks
References
ch. 14 Applied Non-Equilibrium Thermodynamics / Dick Bedeaux
14.1. Introduction
14.1.1. A Systematic Thermodynamic Theory for Transport
14.1.2. On the Validity of the Assumption of Local Equilibrium
14.1.3. Concluding remarks
14.2. Fluxes and Forces from the Second Law of Thermodynamics
14.2.1. Continuous phases
14.2.2. Maxwell-Stefan Equations
14.2.3. Discontinuous Systems
14.2.4. Concluding Remarks
14.3. Chemical Reactions
14.3.1. Thermal Diffusion in a Reacting System
14.3.2. Mesoscopic Description Along the Reaction Coordinate
14.3.3. Heterogeneous Catalysis
14.3.4. Concluding Remarks
14.4. The Path of Energy-Efficient Operation
14.4.1. An Optimisation Procedure
14.4.2. Optimal Heat Exchange
14.4.3. The Highway Hypothesis for a Chemical Reactor
14.4.4. Energy-Efficient Production of Hydrogen Gas
14.4. Conclusions
References.

Browse Subjects

Show more subjects...

Statistics

from
to
Export