Linked e-resources

Details

Intro; Preface; Contents; Part I: Viral Proteins Activated By Host Proteases; 1: Activation of the Hemagglutinin of Influenza Viruses; 1.1 Structural Basis for Activation of HA Fusion Potential; 1.2 Structure of HA0 Cleavage Sites; 1.3 Activating Proteases; References; 2: Proteolytic Activation of Paramyxoviruses and Pneumoviruses; 2.1 Paramyxoviruses and Pneumoviruses; 2.2 The Role of Protease Cleavage in Fusion Protein Activation; 2.3 Proteases Involved in Paramyxovirus F Protein Proteolytic Cleavage; 2.3.1 Furin and Its Role in F Protein Cleavage

2.3.2 Extracellular Cleavage of Paramyxovirus F Proteins with Monobasic Cleavage Sites2.3.3 The Henipavirus F proteins: Intracellular Cleavage by Endosomal Proteases; 2.4 Proteases Involved in Pneumovirus F Protein Proteolytic Cleavage; 2.4.1 Respiratory Syncytial Virus F Proteins: A Novel Case of Two Proteolytic Processing Events; 2.4.2 Extracellular Cleavage of F Proteins from the Metapneumoviruses; 2.5 F protein Proteolytic Processing, Pathogenesis, and Antiviral Approaches; 2.6 Proteolytic Activation of the Hemagglutinin-­Neuraminidase Glycoprotein; References

3: Cleavage of the Glycoprotein of Arenaviruses3.1 Arenavirus Structure, Genome Organization, and Basic Virology; 3.2 Arenavirus GP Structure and Function; 3.3 The Proprotein Convertase SKI-1/S1P Cleaves Arenavirus GPC; 3.4 The Mechanism of SKI-1/S1P Processing of Arenavirus GPC Differs from Cellular Substrates; 3.5 Optimized Recognition of Arenavirus GPC by SKI-1/S1P: Viral Advantage and Achilles' Heel; 3.6 The Processing of Reptarenavirus GPC Is Largely Unknown; 3.7 Targeting SKI-1/S1P-Mediated GPC Processing as an Anti-arenaviral Strategy; 3.7.1 Protein-Based Strategies

3.7.2 Peptide-Based Compounds and Small Molecules3.7.3 A Novel Cell-Based Sensor for SKI-1/S1P as a Platform for High-Throughput Drug Screening; 3.7.4 Use of the SKI-1/S1P Sensor to Predict Protease Use of Newly Emerging Arenaviruses; References; 4: Priming Time: How Cellular Proteases Arm Coronavirus Spike Proteins; 4.1 Introduction; 4.2 The Coronavirus Spike Protein: Viral Key for Entry into the Target Cell; 4.3 Proteolytic Priming of Coronavirus Spike Proteins: Basic Concepts; 4.4 Proteolytic Activation of the Spike Proteins of SARS-­CoV and MERS-CoV

4.4.1 Cathepsin L: Endosomal Activator of the Spike Protein4.4.2 Activation of the Spike Protein by Type II Transmembrane Serine Proteases at the Cell Surface; 4.4.3 Furin Can Activate Coronavirus Spike Proteins in the Constitutive Secretory Pathway of Infected Cells and During Viral Entry into Target Cells; References; 5: Proteolytic Processing of Filovirus Glycoproteins; 5.1 Introduction; 5.2 Biosynthesis and Maturation of Filovirus Glycoproteins; 5.3 The Role of GP in Host Cell Entry; 5.4 Proteases Responsible for GP Processing; References

Browse Subjects

Show more subjects...

Statistics

from
to
Export